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13. ABSTRACT (Concluded)

relation of Tate target strength (Rt) to the Hugoniot elastic limit (HEL)
and the relation of the loss of shear strength to the ballistic performance
of brittle solids.

We determined the dynamic material properties and performed ballistic 5
testing on proprietary cermaics supplied to ARO by several ceramic research
groups and manufacturers. ,.

.The principal investigator, Dr. Stephan Bless, created and maintained =
open communication with the other DARPA research groups supplying them
with data, and analysis, and performing tests and experiments for them.
Ir. Bless was a very active participant at all DARPA, ARP and BTI topical I
meetings of consequence. He chaired the committee for developing a
ceramic screening test methodology. UDRI organized, hosted., and chaired
an ARO-sponsored meeting on 18 April 1989 to discuss ceramic screening 3
tests,

This short synopsis shows that we more than adequately complied with
the requirements of the statement of work.
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!
SUMMARY

Ballistic impacts on ceramics give rise to many complex phenomena. Common3 features of many aspects of target response include compressive failure, followed by shear

and/or tensile failure, followed by bulk motion (flow) of damaged material. As a leader in

both shook physics and terminal ballistic research, the University of Dayton Research

Institute (UDRI) was uniquely qualified to perform the study of the behavior of ceramics

subjected to these unusual loading conditions which is the subject of this report.

To investigate these phenomena we developed, modified, and/or improved a set of

impact tests to exercise ceramics in stress states and stress histories that are characteristic

of ballistic impact. This set included the transverse gauge technique 2, bar impacts 3.5,

reverberation technique 4 , unload/reload technique 6, etc. We used these experiments to3 gain insight into the behavior of ballistic ceramics important to DARPA research groups.

Included in the ceramics studied were TiB 2, B4C8,12 , AN 7 9,1 1.

i We developed correlation's, based upon empirical data, between the material

properties and the ballistic properties of ceramics. The correlations included the relation of

Tate target strength (Rt) to the Hugoniot elastic limit (HEL)' and the relation of the loss of

shear strength to the ballistic performance of brittle solids 10 .

5 We determined the dynamic material properties and performed ballistic testing on

proprietary ceramics supplied to ARO by several ceramic research groups and

if manufacturers.

The principal investigator, Dr. Stephan Bless, created and maintained operl

i communication with the other DARPA research groups supplying them with data, and

analysis, and performing tests and experiments for them. Dr. Bless was a very active

participant at all DARPA, ARO, and BTI topical meetings of consequence. Ho chaired the

committee for developing a ceramic screening test methodology, UDRI organized, hosted,

and chaired an ARO-sponsored meeting on 18 April 1989 to discuss ceramic screening

tests.

This short synopsis shows that we more than adequately complied with the

requirements of the statement of work.
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SECTION 1

PRIMARY RESULTS AND FINDINGS

1 1. SPECIFIC ATTAINMENTS

5 In order to study the dynamic behavior of ceramics we developed, modified, and/or

improved the following impact experiment techniques:

3 shork-reshock
nhook-reload

shock-utiload-shock

&A:ect measurement of strength

effect of pressure and strain rate
propagation of failure waves

Under our direction, RDA developed damage-accumulation and constitutive models

by simulating piate and bar impact experiments. We developed a three dimensional,

continuum mechanics based, ceramic constitutive model 13.

I Alternative methods for ceramic screening were also developed. It was proposed

and advocated that ballistic resistance rather than differential mass efficiency be used to

characterize ceramic performance 14 .

5 2. DYNAMIC CHARACTERIZATION OF CERAMICS

UDRI determined the dynamic behavior of several ceramics using various

experimental techniques. The advanced ceramics investigated included AIN, B4C, and
TiB 2.I The dynamic response of AIN was determined in a series of plate impact

experiments using manganin gauges both in the longitudinal and lIteral orientations to the

shock direction 7,9,11. The shear strength of the shocked material beyond its ýIEL was

determined, thus, demonstrating the value of the development of the transverse gauge

3 technique.

Dynamic properties of B4 C were also rmeasured. The results were compared with

the theoretical predictions of various models 8,12.15.

I



I
A double impact technique was developed and used to determine the strength of

shock loaded ceramics. A quantitative measure of the damage induced by low amplitude

shock waves was obtained 16 .

Recent experimental developments to study the dynamk -'.sponse of ceramics to

Impulsive loading were reviewed. These included: (1) the transverse gauge configuration,

(2) double flyer plate techniques, and (3) the bar Impact configuration to measure yield

strength under 1-d stress conditions 17 ,

i Researchers used a reverberation technique to study the load/unload behavior of

TiB 2 , AIN and B4C4 .

I The strength of TiB2 was measured under shock compression and. after step

unloading by using transverse manganin gauges. The pressure hardening exhibited by the3 material was conjectured to explain its superior ballistic performance 2 ,

S3. GLASS AS A BRITTLE MATERIAL

The reverberation plate technique was applied to soda lime glass to see if the

dynamic unloading behavior of brittle materials could be determined. The unloading

behavior observed was similar to that of quartz giving strong indication that the technique is

5 viable 2 0.

Experiments were conducted to determine the spall strength of soda lime glass.3 Additional experiments were conducted to monitor the existence of a fracture wave

propagating away from the impact zone behind which the spall strength is zero21.

4. FAILURE WAVES IN GLASS

3 We performed both plate impact and b~ir impact expariments oi soda lime glass

and pyrex to investigate failure waves. Failure waves were observed to propagate behind

the compression waves. The material traversed by the failure wave suffers a total loss of
tensile strength and a substantial drop in shear strength. The results of these extensive3 experiments were reported in several publication, 22 25 .

S5. BAR IMPACT EXPERIMENTS

The failure of ceramics and glass was studied with instrumented bars and an

IMACON high speed framing camera3 ,5. UDRI's ceramic constitutive model, based on 3-d

£2
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continuum mech~nics, was used t:) model AD-85 cerarnic. The AD-85 model was
employed in the finite element computer program, EPIC-2, to modol a symmetric rod

impact13 .

6. CORRELATION OF MATERIAL PROPERTIES AND BALLISTIC

3 PERFCRMANCE

An understanding of "Tate target strength", Rt, as a general property of ceramics

-- that can be derived from screening tests was developed 18 . Its use as a single parameter

for describing the penetration iesistance of ceramics was derived. The value of Rt was

SI shown to be cklsely correlated with the HEL of ceramics1.

Ballistc experiments demonstrated a correlation between loss of shear strength of

shock loaded brittle solids, soda lime glass and alumina; and decreased ballistic

penetration resistance1 o.

I Analysis ot the bailistic efficiency of alumina and sapphire revealed that good

ballistic resistance correlates much better with shock strength than with fracture

3 toughness'9.

1 7. DEPTH-OF-PENETRATION EXPERIMENTS

There is a continuing need for government and industrial laboratories to efficiently

3 evaluate new ballistic materials. A primary means of evaluating such materials is the

depth-of-penetration (DOP) test 26 and described in Section 2.

i IWe evaluated and screened advanced ceramics for ballistic performance using the

DOP technique for other ARO contractors and members of t.he DARPA/BTI pr(,gram,

I particularly for Dow Chemical, Georgia Tech Research Institute, and SUNY Buffalo. The

results of this testing is reported in the attached documents.

SDuring the course of the program a large DOP data base wat developed. We

recommend that a follow-on program be initiated to use statistical m rthods to analyze

3 these data.

£ 8. COMMUNICATION WITH OTHER DARPA RESEARCH GROUPS

Throughout the program, UDRI engaged in frequent communication and data

5 interchange with other DARPA research groups. Dr. Bless was an active parlicipant in the

3

U



Los Alamos Scientific Laboratories (LASL) Ceramics Working Group. He presented a

synopsis of UDRI modeling of ceramic armor and interpretation of the Phermex data at their

6 and 7 December 1989 meeting. He presented early bar impact results at the 10 March

1989 meeting. At this meeting Dr. A.M. Rajendran presented UDRI's ceramic failure model.

Dr. Bless chaired an ARO Committee to develop a standardized ceramic screening

methodology. UDRI organized, hosted, and chaired an ARO-sponsored meeting on 18 April

1989 to discuss ceramic screening tests. Dr. Bless was the driving force behind and3 prepared the Draft Summary of Findings of the Committe, on Standardization of the Test

Methodology For Ballistic Performance of Ceramics and Cermets.

Stephan Bless was an active participant in the 4 December 1989 BTI Advanced

Computational Methods Progress Review and BTI Advanced Armor/Anti-Armor Materials

3 Program Progress Review. Mr. Abfalter, Dr. Bless, and Stephen Hanchak participated in the

TACOM sponsored meeting on "Impact Test Methods for Characterization of Ceramic

Materials for Armor Components" on 17-18 December 1991 held at the Jet Proposal

Laboratory.

1 9. CONCLUSIONS

During the course of this program UDRI developed, improved, and/or modified a

3 number of impact experiments. These and other techniques were used to develop material

and ballistic properties of ceramics of current interest to ARO and DARPA. Our analysis3 determined correlations between ceramic material properties and ballistic performance. We

performed DOP testing, evaluation and consulting fc- other members of the DARPA research

community. We established and maintained excellent communications and working

arrangements with the other members of the DARPA research community. We took a

leadership role in many areas, e.g., the development of a standardized ceramic scr3ening

test methodology. We advanced the state of the art in the testing of ceramics and immensely

broaden the knowledge of the dynamic behavior of ceramics and brittle materials.I
10. RECOMMENDATIONS

I The DOP data base developed during this program may contain more information

than currently reported. Sophisticated statistical techniques may yield correlations between

3 ballistic properties of ceramics and other properties. They might also point the direction for

future testing to rationally fill out the data bas, to answer open questions on such

5 correlations.

I
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"SECTION 2
COMPARATIVE EVALUATIONS OF CERAMICS WITH

.50 SLAP PENETRATOR

1. BACKGROUND

Work reported herein was sponsored by the U.S. Army Research Office (ARO) and
by Dow Chemical Corporation. The Project Manager for ARO was Dr. Kailasam lyer. The

Project Manager for Dow was Dr. William Rafaniello. Hot-pressed TiB2/A120 3 samples
were provided by Georgia Tech Research Institute (GTRI). Kathryn Logan was the Project
Manager for GTRI. One each sintered AMN tile and a sintered TiB 2 composite tile were
supplied by Dr. Vladmir Hlvacek of the State University of New York at Buffalo (SUNY-B).3 Experiments were conducted in the facilities of the University of Dayton Research Institute
Impact Physics Laboratory. Range Technicians Stephen Hanchak and Thomas Williams3 are to be commended for their support in assembling targets and performing ballistic tests

for this effort. This report constitutes a final topical report.

I A. Armor Ceramics

Future fighting vehicles will be required to survive impacts by advanced projectiles

that have greater penetration ability than current threats. However, these vehicles will
have litt!e or no increased weight allowance for armor. Consequently, new armor designs

will be required that provide greater weight efficiency. It is quite likely that the performance
goals of new armor will require use of ceramics1 .

There have been many experimental programs that have demonstrated superior
performance of armor targets that include advanced ceramic tiles. Unfortunately, it has

usually been found that top level performance is only achieved using fully dense AIN, TiB 2,
or SiC macle by relatively expensive hot pressing techniques.

Unoer ARO sponsorship, several alternative processing schemes have been
investigated that may lead to much less expensive armor-grade ceramics. Dow Chemical

developed new processing techniques to produce sintered AIN and AIN/SiC composites.
GTRI and the SUNY-B developed reaction sintered TiB2 and TiB2 composites.

I '8
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3 B. DOP Test Technique

There is a continuing need for government and industrial laboratories to efficiently3 evaluate new ballistic materials. One of the main ways that this can be done is by means

of depth of penetration (DOP) tests.

3 In a DOP test, the test material is placed onto a substrate of a reference material.
The projectile is designed so that it will penetrate the test materials and come to rest after3 penetration, PR, in the substrate. This type of testing was first used to derive performance

criteria for ceramics in the mid 1 980's2,3,4. It has since come into widespread use 5 6, 7 .

3 There are several ways to analyze DOP results. A common technique is to

compute the differential efficiency of the test material with respect to the substrate. The

Sformula for this is:

Aem = WC

Here, WREF is the areal density of the substrate that would be penetrated if there were no3 armor material, WR is the areal density of the substrate penetrated below the armor

material, and Wc is the areal density of the armor material. For example, if Aem = 2, then3 the armor material provides a given level of protection at half the weight of the substrate.

Another analysis technique to compute the performance of a test material relative to

5 a reference material is

UeREL = [WREFMTL]I

3 As with Aem, the tested ceramic provides the same protection as the reference material at

I/eREL times the weight of the reference material. The reference material of interest is3 usually RHA (rciled homogeneous armor, MIL-SPEC-1 2560).

A variety of different geometries have been used to perform DOP tests. In order to3 resolve discrepancies, ARC formed a committee in 1989 to propose standard techniques

I
I
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I
for conducting DOP tests. The committee made a set of recommendations which are
summarized in Exhibit i.1. These have not yet been formally acted on by the government.

However, they have been closely adhered to in the current work.

The most significant modification to the protocol in Exhibit 1.1 was the replacement

of the .50 M2AP bullet by the .50 Olin SLAP (sabot light armor piercing) bullet. The

motivation for this substitution was that the intended application of the tested ceramics is
for heavy armor. Heavy armor threats are generally long rods made from tungsten or3 uranium alloys. The stress levels produced on impact are of the order yo = 1/2 ppVS2 + Yp

(where pp is penetrator density, Vs is impact velocity, and Yp is penetrator strength). For
typical impact velocities of 1.5 to 1.7 km/s, 220 < ao < 280 kbar. These stresses are

considerably more than those produced by impact of a .50 M2AP, for which oo - 50 kbar.
Moreover, long rods are defeated by erosion within the tile, whereas M2AP bullets are

generally defeated by shatter on the tile surface. The impact dynamics of the LRP are
more nearly simulated by the SL AP bullet. For the SLAP, oo = 150 kbar. Moreover, like

3 the LRP, the SLAP is defeated by erosion.

3 2. TEST METHODOLOGY AND REFERENCE DATA

i A. Launch

The projectiles used in this study were manufactured Olin Corporation, and

Sare designated .50 caliber SLAP. A subcaliber penetrator is carried by a separating sabot.
The base of the penetrator is keyed by a slot to an aluminum pusher in the sabot so that

the penetrator is spin stabilized by the action of the barrel rifling grooves. The projectiles

were shot as received, using a 1:15 twist rate barrel that was 1.05 m long (UDRI S/N-

0528). The average velocity that was obtained was 1215 m/s and the standard deviation

was 10 m/s.

3 B. _lrojectile

The penetrator material is 95 percent W-Ni-Fe. Tha diameter is 7.72 mm and

the mass is 23.2 g. It is pictured in Figure 2.1. The mechanical properties of the SLAP

alloy wore recently measured on our split Hopkinson bar. Figure 2.2 illustrate a typical
stress strain curve 8 . The compressive strength is about 20 kbar (2 GPa).

I
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C. Taraets

The round ceramic tiles were embedded in round 6061 -T6 aluminum bars that3 were at least 25 mm larger in diameter than the tiles. Cavities were machined Into the
"aluminum to hold the ceramic target discs. Each cavity for the ceramic was machined
individually to allow a good slip fit. The ceramics were glued in place using 5-minute
epoxy. The bond lines on the base of the ceramic were less than or equal to 0.25 mm
thick. Except for a few cases, noted in the shot matrix, the thickness of aluminum below
the ceramic was approximately 125 mm.

I DD. Refergrnce Data

The penetration of this projectile into 6061T651 aluminum was measured to

be 210 mm (shot 9-3226). The penetration is so large in aluminum', because the projectile
tip does not deform. A more useful reference number perhaps is the penetration of a3 round-nose 21 g version of the SLAP projectile. This was an average of 130 mm (shots
9-2668 and 2669).

3. RESULTS

I Table 2.1 shows the DOP test matrix. The columns in this table contain the

following information:

* A: Reference number

1 B: Material identification

C: Tile diameter or width, (mm)

5 D: Tile shape, Bound or Square

E: Tile thickness, (mm)

3 F: Tile mass, (gr)

G: Tile density, (g/cm 3)

H: Tile areal density, Wc (g/crn2)

3 I: Shot number (on our Range 9)

J: Velocity, (m/sec)

3 K: Penetration, Pr (mm)

1 11
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L: Aluminum backing length, S is 100 mm, otherwise > 125 mm (other notes in

text)

M: Sponsorship, D denotes Dow tiles, G denotes GTRI tiles, SUNY denotes

SUNY-B, otherwise ARO

Initially 100 mm thick aluminum blocks were used as backing material. However, in

some shots there was bulging of the rear surface. In order to prevent this we switched to

125 mm or longer aluminum blocks. The shots in which the rear surface of the substrate

bulged may be less reliable and they are noted "S, B* in column L and with B in Figure 2.6.

Figures 2.3 and 2.4 are photographs that show most of the radiographs of

penetration cavities. It can be seen that there is a tendency that when the penetration is

shallow, there is often an early side spur, suggesting that the projectile split passing

through the tile. Cavity diameters can also be measured from the radiographs. However,

there was very little correlation between cavity diameter and penetration depth.

3 Most of ihe original series of tiles tested had an areal density 3 ± 0.01 g/cm 2 , so the

depths of penetrations can be directly compared. This is shown in Figure 2.5. For3 reference, Carborundum sintered SIC, AD995 (from interpolation, on line between two data

points), and TiB 2 data are also included. It should be noted that the Carborundum SiC tiles

were 6 x 6 inch. The larger size may have a small effect on performance. The TiB2 tiles

were either 3 x 3 or 4 x 4 inch and unconfined. TiB2 tiles of these sizes did not differ in
performance.

The effect of tile shape was examined by testing two square shaped tiles of sintered

AiN. These are noted SQ in column D of Table 2.1 and in Figure 2.6. The two 4-inch

square AIN tiles yielded an average penetration of 63.8 mm. This is 5.6 mm below the

average for round AIN tile penetration. Thus it is probable that the DOP values of square

3 AIN tiles would be a little lower than the DOP va!ues of round AIN tiles.

The ceramics clearly rank as groups. The sintered AIN materials are less effective

than the AN/SiC hot pressed composites, which are a little less effective than the sintered

SIC materials. Within a class of material there are only small differences. Correlations

Sbetween performance and composition will probably be discussed in a separate report by

Dow. Figure 2.6 shows the penetration by ceramic groups. According to Dow, Materials

3 36, C, N and SD are all standard AIN composition from different batches. There were two
grain distributions among the AINISiC mixtures. There was not a significant difference in

3 the performance of these two types of materials.

1 12I



The best sintered AtN, Material 29, had the highest compression strength of the

AIN's. It also performed best in a previous study with .30 M2AP bullets (ballistic limit tests).

There is appreciable scatter in these DOP results. Deeper penetration appears to

occur when the projectile remains intact passing through the ceramic.

A sintered AIN and a TiB 2 composite provided by SUNY-B were also evaluated.

The TiB2 composite defeated the projectile at an areal density of 6.26 g/crr2 . An additional

set of AN/SiC tiles (1 00 mm diameter) were evaluated late in the program for Dow. The

tiles (Reference Nos. 70 through 85) varied in composition to provide areal densities from

4.22 to 7.35 g/cm2. Materials Reference Nos. 77, 78, 79, and 81 performed exceptionally
well as shown in Figure 2.7.

* 4. CONCLUSIONS

Overall, no new material tested in this program performed better than conventional

sintered SiC. However, many materials performed as well or better than AD995, which is

the current state-of-the-art sintered alumina. If these materials can be made for reduced

cost, then they have much merit as potential armor materials.

The results described here cannot be reliably extrapolated to other threat

categories. In particular, different results might be obtained with brittle bullets (such as

steel AP bullets or WC bullets) or with long rod penetrators.

m To firm the conclusions and gain additional insight from the data, it is recommended

that statistical techniques be applied to the data base. Statistical analysis should also give

3 direction to completing the data base and answering open questions.

1
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I
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II
, SECTION 3

RESULTS OF DOP TESTING WITH L/D = 10 LONG ROD
PENETRATORS

Work reported herein was sponsored by the U.S. Army Research Office (ARO) and

by Dow Chemical Corporation. The Project Manager for ARO was Dr. Kalaisam lyer, The
Project Manager for Dow was Dr. William Rafaniello. Experiments were conducted in the5 facilities of the University of Dayton Research Institute Impact Physics Laboratory. This
report constitutes a ftnal topical report.

I Hot pressed TiB2/A,20 3 samples were provided by Georgia Tech Research Institute

(GTRI). Kathryn Logan was the Project Manager for GTRI. Range technicians Stephen
Hanchak and Thomas Williams are commended for their support in assembling target,

conducting ballistic tests, and preparing targets for analysis.

1. EXPERIMENT DESIGN

3 Depth.,of-penetration (DOP) experiments were conducted to identify the best

performing ceramic against quarter scale Long Rod Penetrators (LRP). This testI procedure has become popular in recent years as a tool for designing armor elements' 4.

Testing was conducted with quarter scale, 65 g tungsten L/D=1 0 rods supplied by3 Mr. Bill Gooch at Ballistic Research Laboratory (BRL). The rods had a hemispherical nose.
The rod diameter was 7.82 mm and the length was 78.74 mm. The rods were launched

on the University of Dayton Research Institute (UDRI) 30 mm smooth bore Range 1.

The targets were embedded in RC27 certified 4340 steel. We checked the

If hardness on one target section after the shot and measured Brinnell 275 which converts to
HRC29. This material is a surrogate for RHA, although the hardness was on the low side5 of the range for MIL-SPEC-12560.

The steel rounds were 6-inches diameter manufactured by Copperweld Steel. The

steel rounds were machined with round cavities to accept ceramic tiles supplied for testing.

The cavities were individually machined to match individual tiles which allowed a "slip fit" of

the tile into the steel. The tiles were cemented into the steel with Belzona A - Metal
ceramic filled epoxy. A press was used to squeeze out the excess epoxy. Bond lines
under the tile, examined post shot, were typically 0.25 mm thick.

3 25



I
B 2. RESULTS OF EXPERIMENTS

The physical properties of each ceramic tested and the results of the testing are5 given in Table 3.1. Columns in this table are identified as follows:

A: Tile material

9: Tile diameter (mm)

3 C: Tile thickness (mm)

D: Tile mass (g)

SE: Tile density (g/cm3)

F: Tile areal density (g/cm2)

G: Shot number (Range 1)

H: Impact velocity (m/s)

1: Penetration in steel below tile (mm)
J: Remarks (Y is yaw, MR is mass of recovered projectile, and DR is diameter of

recovered projectile)

I Figure 3.1 Is a comparison of our data for 4340 steel compared to Southwest
Research Institute (SWRI) data for the nominally the same steel. The SWRI rod was a
75 g tungsten rod, L/D - 10, with a length of 81.8 mm. The SWRI data was contained in
an unpublished report provided by Dow Chemical, USA. However, the data also appears
in recent publications by Charles Anderson (SWRI) on penetration into steel and into5 alumina.

We found that our data agreed very well with the SWRI data at 1500 m/s. However,
both their data point at 1500 and our points lie significantly above the trend of their data.
This may be because four out of their seven shots above 1200 rn/s had significant yaw.

I Nevertheless, for purpose of establishing a reference penetration, we have fit a
straight line to the L/D = 10 SWRI data and our two points. The fit is shown in Figure 3.2.5 The equation of the best fit line is:

P/L = .00108V - 0.73

We have used this equation to establish reference penctration data.
I Data are presented in the format of plots Of WR versus WC. WC is defined as the

areal density of the ceramic. WR is the areal density penetrated in the substrate (density x

2
26I



penetration, PR). WREF iS the areal density penetrated in the substrate i o tile is present.

The differential mass efficiency, Aem, of the ceramic relative to the substrate is the slope of
the line on the MNR, WC) plot. It can also be computed from

Aem = W2EE_-WR

WC

Figure 3.3 compares the areal density of steel penetrated below the ceramic (WR)
with the areal density of the ceramic (WC) for our AD90 data with the SWRI data. We find
slightly higher penetration for the thicker tiles (WC = 15 g/cm2). However, this effect
diminishes i one takes Into account the difference in velocity in the SWRI shots as shown
later in Figure 3.5. Using equation (1), we have the AD90 results shown for our data3 (triangles) and SWRI data (circles); we calculated em of about 1.5, whereas SWRI data
gives an em of about 1.8.

3 If we use our meamircu value of reference penetration at 1500 mis to compute our
em, we get 1.7 as our em value. If we use the SWRI reference curve we also get an
em = 1.7 as their average em value for AD90 at 15 g/cm2 . Thus, there may be no disparityS between our data, only an apparent offset caused by using equation (1). It would probably
be prudent to reanalyze the performances using a best fit to the unyaweed SWRI data as
reference for their shots and our measured reference rjenexration as a reference for our
shots.

Figure 3.4 shows the penetration data from Table 3.1 for the AD90, hot-pressed
AIN, and sintered AIN specimens at 15 g/cm2. The scatter in these data is relatively small.

SLikewise, the Material 34 data points at WO = 15 g/cn,2 fal! rather close together. Table 3.2
provides SWRI penetration data for Dow supplied matarials. Note that the SWRI data for3 Maerial A at 15 glcm 2 is very suspect for two reasons: (1) the yaw in one shot (#66) was
5.6 degreer., and (2) the datum is very much less than our two shots on Materials A and C.3 IFigure 3.5 displays the SWRI DOP data for ceramics of 15 g/cm2 areal density.

Figure 3.6 displays the penetration data for hot-pressed AtN, sintered AtN, and
TiB2/SiC at 10 g/cm2. The scatter in these data is relatively small. Materials 28 and 34 are
the same, and the penetrations fall very close together. Material 29 and TiB2/SiC showed
ianpreciable data scatter at 10 g/cm2. Figure 3.7 shows the SWRI DOP data for ceramics of
areal cdensity = 10 g/cmý.

27I



Ii
S 3. CONCLUSIONS

Tables 3.2 and 3.3 present the areal densities of the ceramics, Wc, penetrated5 steel substrate (Wr), and calculated ballistic differential mass efficiency, Aem, values for
each material tested by SWRI and UDRI respectively. We used our reference penetration

for steel of 76.7 mm which gives WREF = 59.9 g/cm2 to calculate the Aem values. Figures

3.9 and 3.11 show the relative Aem values, using equation (1) for reference data. Figures
3.8 through 3.11 present the ballistic mass efficiencies from Tables 3.2 and 3.3.

From Figures 3.8 through 3.11 it can be seen that:

3 (1) AIN data for UDRI and SWRI agree quite well except for some anomalies.

(2) AIN out performs AD90.

3 (3) The sintered AIN materials perform as well as or better than the hot-pressed

AIN.

£ (4) TiB2/Ak203 , GTRI material offered promise but was inconsistent. One sample

(shot 922-1) performed exceptionally well and should be pursued further.

(5) One sample of sintered AIN (AS75SBO/AM) displayed exceptional performance

and should be pursued further.
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TABLE 3.2. SWRI PENETRATION DATA AND
CALCULATED BALLISTIC EFFICIENCIES

Tile Material Wc Pr Wr A em
ID g/rfm- (mm) g/cn2

A1211 9.90 39.40 30.77 2.94
Al 212 9.88 42.M0 33.27 2.70
B1213 9.85 36.10 28.19 3.22

I B1214 9.96 41.10 32.10 2.79
C1215 9.94 39.10 30.54 2.95
,1216 9.88 39.30 30.69 2.96

SDl 219 9.85 36.70 28.66 3.17
01220 9.87 41.80 32.65 2.76
El 217 9.93 37.90 29.60 3,05I E1218 9.93 29.10 22.73 3.74
A1801 14.98 12.00 9.37 3.37
A1802 14.97 29.70 23.20 2.45
SB1803 14.80 35.50 27.73 2.17
SB1804 14.93 42.40 33.11 1.79
Cl805 14.98 43.30 33.82 1.74, C1806 15.00 41.90 32.72 1.81
D1809 15.12 41.30 32.26 1.83

E1807 15.07 33.70 26.32 2.23
E1808 15.09 31.00 24.21 2.37

II
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3 I TABLE 3.3. CALCULATED BALLISTIC EFFICIENCIES

I Tile Material Wc Pr Wr em
ID g/cM 2  (Mm) g/cm2

4340RC27(Ref.) 76.70 59.90 1.00I 4340RC27 77.70 60.68
TiB2/SiC-GTRI 769-2 9.43 50.80 39.67 2.15
I1TB2/iC-GTHI 921-1 9.63 41.50 32.41 2.85
TiB2/SiC-GTRI 764 9.66 ,.7.70 37.25 2.34
TIB2/SiC-GTRI 926-1 9.72 40.10 31.32 2.94
A375SG85PM 9.77 17.12 13.37 4.76
AIN (35-A) 9.95 46.50 36.32 2.37
AIN (34-E) 9.95 43.00 33.58 2.65
AS75S802AM 9.96 15.39 12.02 4.81
AS50FSO1 PM 9.97 36.20 28.27 3.17
AS5OF818PM 9.&7, 42.82 33.45 2.65

AIN (29-A) 9.9n 47.27 36.92 2.30
AIN (28-B) 9.99 40.89 31.93 2.80
AIN (29-B) 10.00 40.00 31.24 2.87
AIN (27-H) 10.11 42.04 32.83 2.68
TIB2/SiC-GTRi 769-1 14.34 24.10 18.82 2.86
TiB2/SiC-GTRI 922-1 14.35 1.90 1.48 4.07
TiBJSiC-GTRI 925-1 14.43 25.30 19.76 2.78
TiB2/SiC-GTRI 731-2 14.85 29.60 23.12 2.48

-AIN (35-E) 14.88 29.!9 23.11 2.47
AS50F31PH 14.89 25.43 19.86 2.69
AIN AS5OF30PM 14.92 26.72 20.87 2.S2
AIN (34-A) 14.93 33.84 2.43 2.24
,%IN (34-0) 14.95 32.00 24.n9 2.34

1AS753801AM 1'1.37 0.10 0.08 400.
AIN (31-C) 15.0V 26.28 20.52 2.63
AIN (32-F) 15.00 36.50 28.51 2.09
AS75SG31AM 15.01 22.38 1748 2.83

I LAIN HP (A) 15.01 28.57 22.39 2.50
AIN HP (C) 15.02 29.50 23 04 2.45
AD90 1503 43.70 34.13 1.71
AD90 15.06 44.00 34.36 1.70

IAIN J35-F) 15.13 27 2" 21.31 l 55
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24 AUGUST 1989

DRAFT
SUMMARY OF FINDINGS OF

COMITTEE ON STANDARDIZATION OF THE
TEST H"*.TAODOLOGY FOR BALLISTIC PERFORMANCE3 OF CERAMICS AND CERMETS

By:
Stephan J. Bless

I IUniversity of Dayton Research Institute

I HISTORY

In recent years several different laboratories in the U.S.,

Israel, and Sweden have developed special screening tests for
armor ceramics. These tests differ from Vso tests, in that their

purpae is to compare ceramics, not to develop enginen~ring design
data for ceramic armors. These tests are all versions of the3 thick backing plate technique, sketcht4 in Figure 1. in the
experiments, an overmatching projectile penetrates a ceramic tile

and enters a metal substrate. The penetration in the -ubstrate

is used to calculate various figures cf merit for the test
ceramic.

Referring to Figure 1, we define W as the areal density of
the ceramic, WR as the penetrated walght (thickness x density) of

the substrate, and WREF as the penetration in the substrate when

no tile is present. Figure 2 is A graph of the trend usually

observed in experiments. The differential efficiency of the

ceramic relative to the substrate is

* w

Table 1 is a resume. of ceramic screening experiments that

Shave oeen reported.
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I
A meeting was held 18 April 1989 to discuss issues concern-

ing a standard screening test for armor ceramics. Table 2 lists
the attendees at this meeting. Stephan Bless served as

5 Chairman.

On 5 June 1989 Charlie Anderson released a draft test proce-

dure. Copies of the draft were circulated to attendees at
the 5 June 1989 meeting for their comments.

I Other individuals were also invited by Dr. Bless to con-

tribute to the discussions. These are listed in Table 2A.

i Comments were requested from everyone listed in Table 2 and
2A. Written comments were received from S.C. Chou (AMTL),

5 W. Blumenthal (LANL), and G. Hauver (BRL). Oral comments were
received from W. Gooch (BRL), C. Cline (LLNL), R. Hoffman (Dow),

3 and I. Ahmad (ARO). My conclusions based on these comments are
summarized below. Letters from S. Chou, W. Blumenthal, and

3 G. Hauvnr are included as appendicies.

1. GENERAL

The techniques proposed by SwRI ar- okay if testing must
begin at once. However, they should not be adopted as the final

standard test protocol until several outstanding issues are
settled.

I It is very likely that relative performance of armor
ceramics is threat and application dependent. For example,

apparently many ceramics which perform adequately for brittle

steel bullets are ineffective against W penetrators.

3 Furthermore, some ceramics perform well w'th relatively little
confinement, whereas other may benefit greatly from confinement.

The goal of the present test procedure is to screen ceramics for

LRP protection. Wider applicability should not be claimed. The

test prr *dures developed here may well serve as the kernel for a

more complete protocol to evaluate ceramics for a wider range of

applications.
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2. FORMAT

The scope of the test protocol should explicitly reference

past work (see Table 1). The assumptions discussed in the draft

document are not necessary. W. Blumenthal, in his letters, has
provided several suggestions for how to improve the background

section of the document.

The test protocol should be consistent with ASTM standards.

ASTM procedures should be referenced whenever possible. ASTM
format should be employed. Interaction with ASTM C-28.013 Committee on Mechanical Properties would be desirable.

3 3. TILE SPECIFICATIONS

There is much concern about tile dimension. Studies with
quarter-scale rods have shown decreased performance in tile <

4 inches. Other studies indicate little or no loss of perfor-3 mance in small tiles that are stiffly confined.

Since the screening test is designed to be an inexpensive

3 technique for QA or new tile evaluation, the sample size should
be kept small. We think that the 4 inch tiles proposed by SwRI

are adequate as long as they are snugly confined in steel.

Chamfer on the tile is not necessary. Surface finish should
be per MTL specs or else specifically noted.

Ceramic characterization should not be the burden of the
screening agency, except perhaps for sound speed and density,

which are readily obtained with instrumentation available in most

testing laboratories. However, the test report should include as

U much data as are available about the tiles. Table 3 contains a
list of desirable information.I
4. CONFINEMENT STRUCTURE

3 There is a concensus that a steel backplate is best.
However, the backplate should be 434n HRC 27 ± 2. A softer

4
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U
material provides bett.er resolution. It is also characteristicI of bulk armor steel. The DARPA-mandated hardness of HRC 37 is
program specific, and not advisable.

There is no concensus about cover plates. Reference to
Table I shows wide variations in current practice. Some ceramics
have been observed to perform worse with cover plates. We are
unaware of demonstrated improved performance with cover plates,3 except where interface dwell occurs. Interface dwell seems to be
a geometric effect that is not of interest to ceramic screening

3 experiments. Therefore, we propose that no cover plate be used.

TABLE 3
DESIRABLE INFORMATION ABOUT CERAMICS

1. Manufacturer, including batch, powder lot, process, ap-I plicable specifications.

3 2. Composition.

3. Microstructure (including photographs of grain structure, if
* available).

4. Mechanical properties, density, sound speed, Young's
modulus, Poisson's ratio, Knoop hardness (1000 g load).

1 5. Physical appearance (color, finish).

3 6. Porosity.

3 The procedure for radiographing the substrate should spell

out a fiducial system. The section should be radiographed twice,
3 with adjacent sides against the film, to correct for curved

penetration channels.

1 5. PROJECTILE

For screening, all that matters is consistency and that the
rod significantly overmatch the target. However, several
investigators have found it advantages to use W0 as a figure of

CI
merit for ceramics. If the piojectile is a 65 g quarter-scale

4
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rod, Then W 0 is probably the optimum size tile to use in a stand-

alone armor. This is a valuable side benefit of screening
experiments. Therefore, we recommend that the penetrator ac-3 tually be a generic quarter-scale rod.

6. TARGET FIXTURE

The tist procedure should include design of the target3 fixture. This should be robust and reversible. BRL and UDRI,
for example, have developed st&ndard target mounting proceduves.

7. NEED FOR MATERIAL STANDARDIZATION

3 One approach to testing is to strictly specify all aspects
of the test procedure so that residual penetration data taken in
different laboratories can be directly compared. We suggest a

less rigorous approach in which relative performance parameters
are measured.

Each apparatus should be calibrated by measuring WR as a
function of Wo with a standard ceramic. We propose armor-grade

Coors AD998 (CAP 3) for this purpose. The ceramics may be com-
pared to the "standard" by computing

VW (for CAP 3)

3 eR W Wc (test ceramic) for same WR.

The value of eR would include error brackets representing the

uncertainity in the WR measurements.

Whatever figure of merit is adjusted, the reference data

must include the effects of small excursions in velocity from the
nominal value.

I
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8. RECOMMENDED TEST PROGRAM

We strongly recommend that ARO sponsor a test proqram to
clarify the importance of certain test parameters before the test
procedure is finalized. Table 4 lists the components of the test
program.

I
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TABLE 2
ATTENDEES AT 18 APRIL 1989 MEETING

UNIVERSITY OF DAYTON RESEARCH INSTITUTE

I Dr. Mary Alms RDA (703) 684-0333

I Dr. William Blumenthal LANL (505) 667-6972

George Roth UDRI (513) 229-3812

3 Patrick Woolsey AMTL (617) 923-5187

Stephen Mariano AMTL (617) 923-5233

I Ron Hoffman DOW (517) 638-7313

3 Georqe Hauver BRL (301) 278-6052

Dr. Charles Anderson SWRI (512) 522-2313

3 Dr. Kalisam Iyer ARO (919) 549-0641

Dr. Iqbal Ahmad ARO (919) 549-0641

3 Andrew Crowson ARO (919) 549-0641

Dr. George Mayer IDA (703) 578-2864

Dr. N. Singh Brar UDRI (513) 229-3546

3 Dr. Stephan Bless UDRI (513) 229-3546

U
TABLE 2A

ADDITIONAL INDIVIDUALS INVITED TO
REVIEW SCREENING PROCEDURES

3 Dr. Marc Adams JPL (818) 354-3031

Dr. Carl Cline LLNL (505) 667-6972

William Gooch BRL (301) 278-6052

I
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TABLE 4

EXPERIMENTAL STUDIES NEEDED TO HELP DEVELOP
SCREENING PROCEDURE

All tests conducted with armor-grade alumina and B. C.

3 SUBJECT APPROACH

1 Tile size study. Tile aspect ratios of 3:1,
4:1, and 6:1. Do tests
with steel lateral con-
finement and no lateral

confinement.

2 Cover plate study. Tests with mild steel ana
hard steel. Cover plate
thickness 0, 1, and 4
projectile calibers.
Cover plate in intimate
contact or separated by
0.5 caliber elastomer.

3 Tile thickness study. Test tiles in thicknesses
of 1 to 10 calibers.
Vary rod L/D to maintain
good resolution.

3 4 Shape study. Compare square and round
tiles in square and round
cont"inment blocks.

5 Study effect of filler If study 1 shows
material. confinement effects, then

test tight tiles and
tiles with 0.5 mm gaps
filled with epoxy or
Belzone.

6 Determine WR statistics. Shoot a fixed ceramic tile
at least six times and
compute the variance of
the WR measurement.

7 Determination of The tiles examined in

correlation. tests 1 and 3 should be
used in stand-alone armor
targets with steel and
GRP substrates. V
values should be daer-
mined and compared with
screening ranking.
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